Balanced Search Trees
AVL Trees

Dr. Suleiman Abu Kharmeh
Balancing Binary Search Trees

• Many algorithms exist for keeping binary search trees balanced
 – Adelson-Velskii and Landis (AVL) trees (height-balanced trees)
 – Splay trees and other self-adjusting trees
 – B-trees and other multiway search trees
AVL Trees

• An **AVL tree** is a binary search tree that either is empty or in which:
 - Heights between left and right subtrees differs by only 1
 - The left and right subtrees are also AVL trees.

Unbalanced vs. balanced:
AVL Trees

- For each AVL tree node, the difference between the heights of its left and right subtrees is either -1, 0 or +1.

 balanceFactor = height(left subtree) - height(right subtree)

 - If balanceFactor is positive, the node is "heavy on the left" since the height of the left subtree is greater than the height of the right subtree.
 - With a negative balanceFactor, the node is "heavy on the right."
 - A balanced node has balanceFactor = 0.
Balance can be maintained through rotations

- Rotation: an adjustment to the tree, around an element, that maintains the required ordering of elements.
AVL Trees (continued)
AVLTree

Insert 55 along path 40 - 50 - 60
Insert 65 along path 40 - 50 - 60

Inserting 55 and 65 maintains AVL height-balance.
Balanced Binary Search Trees

Binary Search Tree (a)

AVL Tree (b)

2-3-4 Tree (c)

Red-Black Tree (d)
For any right rotation around element x, the right subtree of x's left child becomes the left subtree of x.

Rotate right around 100:
For any right rotation around element x, the right subtree of x’s left child becomes the left subtree of x.

Here is a right rotation around 100:

Notice that 90 is now in the right subtree.
There are four kinds of rotation:

1. A left rotation;

2. A right rotation;

3. A left rotation around the left child of an element, followed by a right rotation around the element itself;

4. A right rotation around the right child of an element, followed by a left rotation around the element itself.
Implementing the AVLTree Class

(a) Insert in left (outside) grandchild
Left subtree of LC

(b) Insert in right (inside) grandchild
Right subtree of LC

Inserting X imbalances the parent node P with balance factor 2.
Implementing the AVLTree Class

(a) Insert in right (outside) grandchild
 Right subtree of RC

(b) Insert in left (inside) grandchild
 Left subtree of RC

Inserting X imbalances the parent node P with balance factor – 2.
AVL Tree Rotations (continued)

- A *single right rotation* rotates the nodes so that the left child (LC) replaces the parent, which becomes a right child. In the process, the nodes in the right subtree of LC (RGC) are attached as a left child of P. This maintains the search tree ordering since nodes in the right subtree are greater than LC but less than P.
AVL Tree Rotations (continued)

Single Right Rotation
singleRotateRight()

// perform a single right rotation for parent p
private static <T> AVLNode<T> singleRotateRight(
 AVLNode<T> p)
{
 AVLNode<T> lc = p.left;

 p.left = lc.right;
 lc.right = p;
 p.height = max(height(p.left),
 height(p.right)) + 1;
 lc.height = max(height(lc.left),
 lc.height) + 1;

 return lc;
}
AVL Tree Rotations (continued)

• A symmetric single left rotation occurs when the new element enters the subtree of the right outside grandchild. The rotation exchanges the parent and right child nodes, and attaches the subtree LGC as a right subtree for the parent node.
AVL Tree Rotations (continued)

• When a new item enters the subtree for an inside grandchild, the imbalance is fixed with a double rotation which consists of two single rotations.
AVL Tree Rotations (continued)

Single left rotation about LC

Single right rotation about P
Double right rotation implemented by two single rotations.
Rotations summary

• Elements not in the subtree of the element rotated about are unaffected by the rotation.

• A rotation takes constant time.

• Before and after a rotation, the tree is still a binary search tree.

• The code for a left rotation is symmetric to the code for a right rotation: Simply swap “left” and “right.”
Summary Table Of Rotations

<table>
<thead>
<tr>
<th>Type of imbalance</th>
<th>Balance factor of parent</th>
<th>Balance factor of child</th>
<th>Direction of 1st rotation</th>
<th>Direction of 2nd Rotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left-left</td>
<td>-2</td>
<td>-1</td>
<td>Right</td>
<td>NA</td>
</tr>
<tr>
<td>Right-right</td>
<td>+2</td>
<td>+1</td>
<td>Left</td>
<td>NA</td>
</tr>
<tr>
<td>Left-right</td>
<td>-2</td>
<td>+1</td>
<td>Left (child)</td>
<td>Right (node)</td>
</tr>
<tr>
<td>Right-left</td>
<td>+2</td>
<td>-1</td>
<td>Right (child)</td>
<td>Left (node)</td>
</tr>
</tbody>
</table>
Example - Building an AVL Tree

Insert 24 12 5 Single Rotate Right (P = 24)

Insert the first three elements 24, 12, and 5. At 5, node 24 has balance factor 2.
Example - Building an AVL Tree
(continued)

![Diagram showing an AVL tree](image)

- Insert 30 20 45
- Single Rotate Left (P = 12) attach 20 as right child of 12
- Insert the next three elements 30, 20, and 45.
 At 45, node 12 has balance factor -2.
Example - Building an AVL Tree (continued)

Insert the three elements 11, 13, and 9. At 9, node 5 has balance factor −2.
Example - Building an AVL Tree (concluded)

Insert 16

24
12
30
9
20
45
5
11
13
16

Single rotate left about 13 then single rotate right about 20

24
12
30
9
16
20
45
5
11
13

Insert the last element 16. Node 20 has balance factor +2.
Efficiency of AVL Tree Insertion

• A mathematical analysis shows that the worst case running time for insertion is $O(\log_2 n)$. The worst case for the difficult deletion algorithm is also $O(\log_2 n)$.